FF-106A SERIES

double nozzle flapper force feedback flow control EHSV
AVIC Nanjing Servo Control Systems Co., Ltd has been manufacturing servo valves for over 50 years. FF-106A series servo valves have been widely used in both military and industrial applications, such as aviation, aerospace, radar, metallurgy, chemical industry, manufacture, geological exploration, construction, power generation, textiles printing and various kinds of test equipment. Now we can deliver over 10000 pieces annually. FF-106A is an affordable equivalent to Moog 760. It boasts a large share of domestic market and enjoys great reputation among users both at home and abroad.

Servo valves in this catalog are in conformity with GJB3370-1998 of China military standard for servo valves used for aviation.

Our quality management system has passed ISO 9001:2000 quality assurance standard.

Note
Please clear the whole hydraulic system before installing servo valve as per ISO 6072.
Please refer to general technical data and electrical performance.

This catalog is for users with professional knowledge. Please refer to this catalog to ensure the safety and every function of system. We reserve the right to change the specifications in this catalog before notice. Please contact AVIC Nanjing Servo Control Systems Co., Ltd in case of any enquiry.

609 F is the trademark of former China Research Institute of Aero-Accessories (NO 609 Research Institute). AVIC Nanjing Servo Control Systems Co., Ltd, a restructuring unit of 609, reserves the right to ownership change. For further information, please visit us at http://www.njservo.com.
Characteristics

- High precision control, fast dynamic response, and ease of operation.
- Stainless steel body, high structure strength.
- Compact structure, small size, and light weight.
- Stable performance, high reliability, and long working life.
- Low internal leakage and low power consumption.
- Low hysteresis, high threshold, and high repeatability precision.
- Excellent linearity, driving force, and small null shift.
- EHSV with fifth supply port is available.

Structure

- Servo valve consists of permanent magnetic torque motor (first stage hydraulic amplifier) and power amplifier (second stage hydraulic amplifier).
- Permanent magnetic torque motor consists of armature assembly (1), upper pole piece (2), lower pole piece (3), two permanent magnets (4), right and left coils (5), flexible tube (6), two nozzles (7), fixed orifices (10), and internal oil filter (11). The armature assembly (1) is embedded in the armature, flexible tube, flapper, and feedback spring. They are connected by soldering and crimping. The armature assembly is fixed on the valve body (12) by two bolts. Power stage amplifier is made up of sleeve (8) and spool (9) and other parts.

Operation

FF-106A EHSV has a polarized torque motor, which consists of 2 permanent magnets, armature assembly, upper and lower pole piece, and 2 coils. In the torque motor, two pieces of charged permanent magnets polarize pole pieces, and both ends of its armature are respectively inserted into the gaps formed by upper and lower pole pieces. A flexible tube is employed to play the role not only in a spring support for the armature-flapper assembly but also in a sealing between electromagnetic and hydraulic parts. The flapper of the first stage hydraulic amplifier is inserted between two nozzles, forming two variable orifices. A feedback spring extends from flapper liner and inserts its ball end in the small slot of the spool.

When electrical current input is applied to the torque motor coils, due to the interaction between controlling and permanent flux, a magnetic torque is created on the armature. This torque makes the armature-flapper assembly rotate about the flexible tube support, moving the flapper in one direction or in another direction. The moved flapper results in increasing the area of one flapper-nozzle orifice and decreasing the area of the other one, creating differential pressure in the two nozzles. Controlled chambers. This differential pressure moves the spool, pushing the ball end of the feedback spring and creating a reacting torque on the armature-flapper assembly. The spool goes on moving until the feedback torque becomes equal to the magnetic torque caused by control current input. At that time, the flapper is moved back to a nearly neutral position. As the magnetic torque is proportional to the current input and the feedback torque is proportional to the spool position as well, therefore, the spool position is proportional to the input current while the mentioned torques are being balanced. Then, with constant valve pressure drop, valve flow output is in proportion to current input when rectangular holes (slots) or annular grooves are employed in the valve bushing.

Performance

- Working pressure: Rated supply pressure: 21MPa, Return pressure: 0.6MPa
- Relative humidity: 10%—90%
- Sealing materials: NR, FPM (other materials at request)
- Working fluids: Petroleum-based hydraulic fluid per DIN 51524 or hydraulic fluid viscosity 10—400mm²/s at 38°C as per clients. Recommend yellow or yellow-10 aircraft fluid.
- Fluid viscosity: ≤0.25, Recommend ≤0.15
- System filtration: High-pressure filter mounted in the main flow without bypass, but with dirt indicator. If possible, directly upstream of the valve. For system with variable speed pump, outside system circulating filter is recommended.
- Note: Contamination level affects servo valve performance greatly (spool position, resolution) and wear (metering edges, pressure gain, leakage).
- Filter rating: For normal operation, ≤0.15 (1μm absolute) for longer life, ≤0.03 (0.5μm absolute)
- Installation: It can be installed in any position or move with system.
- Vibration: 3g, (3 axis), 5Hz—2kHz
- Weight: ≥1.43 kg
- Protection plate: Included in standard delivery

Flow calculation

Valve actual flow rate will be decided by spool position and pressure drop between valve supply and return chambers. Under rated pressure drop φP=210bar (3000psi) and 100% command signal when valve spool moves further, valve no-load rated is defined as rated flow rate Qn.

At no-rated pressure drop and given commander signal, valve actual flow rate is proportional to square root of valve supply and return chamber.

\[Q = Q_n \sqrt{\frac{\Delta P}{\Delta P_n}} \]

- \(Q_n \) — valve rated flow rate (l/min)
- \(\Delta P \) — valve actual pressure drop (MPa)
- \(\Delta P_n \) — valve rated pressure drop (MPa)
- \(Q_n \) — valve actual flow rate (l/min)

When the average flow rate of φ1.2 or φ 2 is less than 30m³/(h·bar), valve volume flow Q can be calculated using this method.

Flow diagram

Flow diagram: At 100% command signal, valve actual flow is linear with valve pressure drop. Note: 70bar=1017psi. The curve demonstrates actual flow rate at different pressure. Users can pick up ESV accordingly as per system supply pressure.
Hydraulic symbol

1 2
P R

This symbol is for EHSV status with supply pressure and command signal at 0.

Electrical connection:

Coil connection mode
- Individual coils: 2+, 1+ or 4+, 3-
- Series coils: connecting 1 with 4; 2+, 3-
- Parallel coils: connecting both 1 with 3 and 2 with 4; (1,3) - (2,4) +

Polarity regulation
- If the current flows from 2+ to 1-, traffic outputs from window 1
- If the current flows from 1+ to 2-, traffic outputs from window 2

Rated current, coil resistance and inductance:

<table>
<thead>
<tr>
<th>Resistance of each coil at 20°C (Ω)</th>
<th>Rated current (mA)</th>
<th>Coil inductance approx (H)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parallel or Individual</td>
<td>Series</td>
</tr>
<tr>
<td>8Ω</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>20Ω</td>
<td>15</td>
<td>7.5</td>
</tr>
</tbody>
</table>
FF-106A series EHSV performance

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>FF-106A/103</th>
<th>FF-106A/218</th>
<th>FF-106A/234</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply pressure range</td>
<td>bar</td>
<td>20~280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated supply pressure Pa</td>
<td>bar</td>
<td>210</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>psi</td>
<td>3050</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MPa</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated flow On</td>
<td>l/min</td>
<td>63</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>gpm</td>
<td>16.64</td>
<td>26.62</td>
<td>26.42</td>
</tr>
<tr>
<td>Rated current in</td>
<td>mA</td>
<td>35</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>Cell resistance</td>
<td>Q</td>
<td>20Ω×20</td>
<td>80Ω×8</td>
<td>80Ω×8</td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>MO2</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hysteresis %</td>
<td></td>
<td>< 0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold %</td>
<td></td>
<td>< 1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity %</td>
<td></td>
<td>< 1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symmetry %</td>
<td></td>
<td>< 1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure gain %</td>
<td></td>
<td>> 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal leakage</td>
<td>l/min</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gpm</td>
<td>0.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Null bias %</td>
<td></td>
<td>< 2.3 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Null shift with supply pressure (DP = 150 MPa)</td>
<td>%</td>
<td>< 2.2 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Null shift with return pressure (DP = 200 MPa)</td>
<td>%</td>
<td>< 2.2 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Null shift with temperature (each change of 0.1°C)</td>
<td>%</td>
<td>< 2.4 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequecy response</td>
<td>Hz</td>
<td>≥40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplification</td>
<td>≥60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase lag [°]</td>
<td></td>
<td>≥10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working temperature</td>
<td>°C</td>
<td>-55~ +150°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net weight Kg</td>
<td></td>
<td>≤1.43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: FF-106A is totally interchangeable with MOOG 760 in terms of technical data and dimension. And custom design is available at request.

1 bar = 14.5 psi
1 gpm = 0.786 l/min

Static performance curve:
- It is measured at system supply pressure of 210 bar (3050 psi), fluid viscosity of 32 mm²/s (1.26 cSt) and fluid temperature of 40°C (104°F).

Flow characteristic curve:
- 63 l/min = 16.64 gpm
- 100 l/min = 26.42 gpm

Pressure characteristic curve:
- Load pressure drop (MPa)
Internal leakage curve:

3 L/min = 0.79 gpm

Frequency response curve:

Dynamic performance curve: It is measured at system supply pressure of 210 bar (3000 psi), fluid viscosity of 32 mm²/s (1.26 cSt) and fluid temperature of 40°C (104°F).

FF-106A/100 frequency response curve at 10%-25%-90% in

FF-106A/63 frequency response curve at 10%-25%-90% in
Installation drawing (metric system)

Installation drawing (English system)

Spare parts and accessories

- O-ring (included in standard delivery)
- NBR75 Shore FPM75 Shore
- for port P, R, 1, 2, 4 pieces, ID10.8×D1.8
- 5080, 51765
- F370, F275

Mating connector
- It is available in FFH3102-145-2P.

Installation bolt (included in standard delivery)
- M6×25 ISO 4762-10.9, 4 pieces

Replaceable filter
- for pilot stage, installed before orifice, Bp75 (corresponding to filtration 35μm absolute)
AVIC Nanjing Servo Control System Co., Ltd., a subsidiary of Nanjing Engineering Institute Of Aircraft Systems (former AVIC 609 Research Institute), is the national leader in the research and development, manufacture of electro-hydraulic servo valves (EHSV in short) with the longest history (since 1948), the largest size and the most advanced level in China. AVIC also has invested in the company. Our company is mainly engaged in the research and development, manufacture, test and delivery and repairs of EHSV and also has the ability to develop servo systems and non-standard equipment for industrial applications.

We have a staff of over 200 people with 29 of them being engineers or senior engineers and 51 being senior technicians. Our factory covers an area of 100,000 m² and our lab covers an area of 40,000 m². We have over 300 sets of equipment and machines, with fixed assets valued at USD 25 million. We are the only one in China to carry out performance test and environment test and validation with working fluid of mineral based hydraulic fuel, phosphate fuel and fuel.

Our EHSV are widely used in aeronautics, space, navigation, metallurgy, machine manufacture, geological exploration, construction machines and all kinds of test equipment. In aeronautics applications, EHSV are used in rubber actuation system, front wheel control system, inlet control system, electronic anti-skid system, radar servo system, cargo door retraction system, engine digital control system, APS and APU.

Our product line covers over 200 models, including force-feedback single stage servo valve, nozzle-fapper two stage servo valve, jet pipe EHSV (jet pipe and jet deflector type) LDDV and RDDV, combined control valve, electro-magnetic hydraulic lock, pressure-reducing valve, hydraulic pump, servo amplifier and EHSV static and dynamic test bench. EHSV’s working fluid covers mineral based hydraulic fuel, phosphate fuel and fuel.

We are also the national leader in terms of EHSV performance test and environment test and validation using hydraulic fluid and fuel. Our test bench includes static and dynamic test, high and low temperature, vibration and shock, temperature-altitude environment test. Temperature test bench can go as far as fluid temperature: -55°C ~ +150°C, environment temperature: -55°C ~ +250°C.

Now we are setting 2 national military standards and one industrial standard. We have 26 technical patents covering EHSV design, measurement and process and test method for whole valve and parts. We also have state of art equipment for hydraulic grinding, deburring etc.

AVIC Nanjing Servo Control System Co. boasts itself in its complete quality management system, advanced manufacture and development level. We are the national leader working towards the digitization, intelligence and high-pressure EHSV. We will strive to keep our clients happy.