

EtraLED EtraLED-NIC-9650 Nichia Modular Passive Star LED Heat Sink Ø96mm

Features VS Benefits

- * The EtraLED-NIC-9650 Nichia Passive Star LED Heat Sinks are specifically designed for luminaires using the Nichia LED engines.
- * Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- * For spotlight and downlight designs from 2000 to 5,100 lumen.
- * Thermal resistance range Rth 1.45°C/W.
- * Modular design with mounting holes foreseen for direct mounting of Nichia COB series.
- * Diameter 96.0mm standard height 50.0mm, Other heights on request.
- * Forged from highly conductive aluminum.
- Zhaga LED engine and radiator assembly is a unified future international standardization
- * Below you find an overview of Nichia COB's and LED modules which standard fit on the srar LED heat sinks.
- * In this way mechanical after work and related costs can be avoided, and lighting designers
- can standardize their designs on a limited number of srar LED heat sinks.

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

Nichia LED Modules directly Mounting Options

Nichia COB LED modules name: NFCWL036B; NFCLL036B; NFCWL060B; NFCWL060B;

With the Zhaga Book 3 Holders: Ideal Holder:50-2100NC; TE LED Holder:2213382-2; Direct mounting with machine screws M3x6.5mm, Green indicator marks. With the LEDiL products: Lena series: CN14xxx; C13xxx; C12xxx; Ronda series: FN15xx-xx;

Nichia COB LED modules name:

NVCWL024Z; NVCLL024Z; NVNWS007Z; NJCWS024Z;

With the Zhaga Book 11 Holders: BJB holder:47.319.6180.50; TE LED Holder:2213118-1; Direct mounting with machine screws M3x8mm, Red indicator marks. With the LEDiL products: Lena series: CN14xx; C13xxx; C12xxx; Ronda series: FN15xxx-xx;

EtraLED EtraLED-NIC-9650 Nichia Modular Passive Star LED Heat Sink ϕ 96mm

Mounting Options and Drawings & Dimensions

3

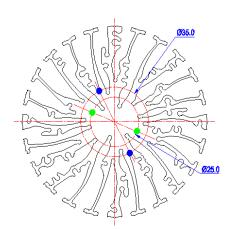
Example: EtraLED-NIC-9650-B-1,2 Example: EtraLED-NIC-96 1 - 2 Height (mm) Anodising Color B-Black C-Clear Z-Custom

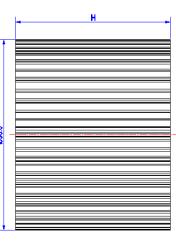
Notes:

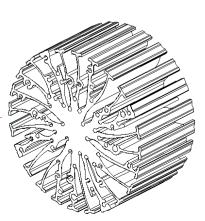
- Mentioned models are an extraction of full product range.

- For specific mechanical adaptations please contact MingfaTech.

- MingfaTech reserves the right to change products or specifications without prior notice.


means option 1 and 2 combined


details Combinations available


Ex.order code - 12

Mounting Options - see graphics for

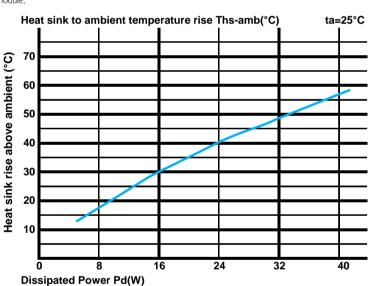
LEDiL products MOUNTING THREAD THREAD HOLE Module type Holder NO. THREAD OPTION DEPTH DISTANCE Lena series Ronda series Ν None None None None None None BJB Holder NVCWL024Z; 47.319.6180.50 NVCLL024Z; 25.0mm/ 2-@180° 1 M3 6.5mm NVNWS007Z; (Zhaga book 11) TE Holder CN14xxx; NJCWS024Z; 2213118-1 C13xxx; FN15xxx-xx Ideal Holder NFCWL036B; C12xxx; 50-2100NC 35.0mm/ 2-@180° NFCLL036B: 2 M3 6.5mm NFCWL060B: TE Holder (Zhaga book 3) NFCLL060B; 2213382-2

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

EtraLED EtraLED-NIC-9650 Nichia Modular Passive Star LED Heat Sink Ø96mm

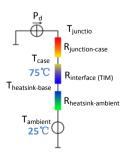
The product deta table

EtraLED	Model No.	EtraLED-NIC-9650
	Heatsink Size	Φ96xH50mm
	Heatsink Material	AL6063-T5
	Finish	Black Anodized
	Weight (g)	458.0
	Dissipated power (Ths-amb,50℃)	34.5 (W)
	Cooling surface area (mm ²)	114836
	Thermal Resistance (Rhs-amb)	1.45 (°C/W)


The thermal data table

* Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.

*To calculate the dissipated power please use the following formula: $Pd = Pe \times (I - \eta L)$.


Pd - Dissipated power ; Pe - Electrical power ; ηL = Light effciency of the LED module;

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)
		EtraLED-NIC-9650	
Dissipated Power Pd(W)	8.0	2.25	18.0
	16.0	1.88	30.0
	24.0	1.67	40.0
	32.0	1.50	48.0
	40.0	1.40	56.0

*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.

Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths - Ta)/Pd$

 $\theta\,$ - Thermal Resistance [°C/W] ; $\,$ Ths - Heatsink temperature ; $\,$ Ta - Ambient temperature ;

*The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{junction-case}$, the thermal resistance of the TIM outside the package is $R_{interface (TIM)}$ [°C/W], the thermal resistance with the heat sink is $R_{heatsink-ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C].

*Thermal resistances outside the package $R_{interface (TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is also used: $T_{junction}=(R_{yunction-case}+R_{case-ambient})\cdot Pd+T_{ambient}$

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

