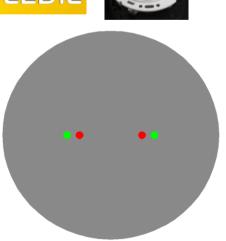


GOOLED

GooLED-NIC-8650 Pin Fin Heat Sink Φ86.5mm for Nichia


Features VS Benefits

- * The GooLED-NIC-8650 Nichia Pin Fin LED Heat Sinks are specifically designed for luminaires using the Nichia LED engines.
- * Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- * For spotlight and downlight designs from 1,600 to 4,400 lumen.
- * Thermal resistance range Rth 1.85°C/W.
- * Modular design with mounting holes foreseen for direct mounting of Nichia COB series.
- * Diameter 86.5mm standard height 50.0mm, Other heights on request.
- * Forged from highly conductive aluminum.

Zhaga LED engine and radiator assembly is a unified future international standardization

- * Below you find an overview of Nichia COB's and LED modules which standard fit on the Pin Fin LED Heat Sinks.
- * In this way mechanical after work and related costs can be avoided, and lighting designers can standardize their designs on a limited number of LED Pin Fin LED Heat Sink.

Nichia LED Modules directly Mounting Options

Nichia COB LED modules name:

NFCWJ108B:

NFCLJ108B:

With the Zhaga Book 3 Holders:

Direct mounting with machine screws M3x6.5mm, green indicator marks.

NFCWL036B;

NFCLL036B:

NFCWL060B;

NFCLL060B:

Ideal Holder:50-2100NC

TE LED Holder:2213382-2;

Direct mounting with machine screws M3x6.5mm, Green indicator marks.

Nichia COB LED modules name:

With the Zhaga Book 11 Holders:

BJB holder:47.319.6180.50;

Direct mounting with machine screws M3x8mm, Red indicator marks.

GOOLED

GooLED-NIC-8650 Pin Fin Heat Sink Φ86.5mm for Nichia

Mounting Options and Drawings & Dimensions

Example:GooLED-NIC-8650-B-1,2

Example:GooLED-NIC-86 1 - 2 - 3

1 Height (mm)

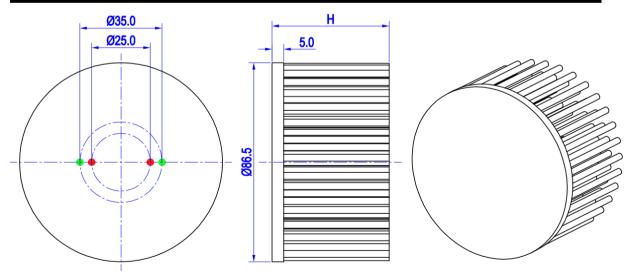
Anodising Color

B-Black

C-Clear

Z-Custom

Mounting Options - see graphics for details Combinations available


Ex.order code - 12

means option 1 and 2 combined

Notes:

- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.
- MingfaTech reserves the right to change products or specifications without prior notice.

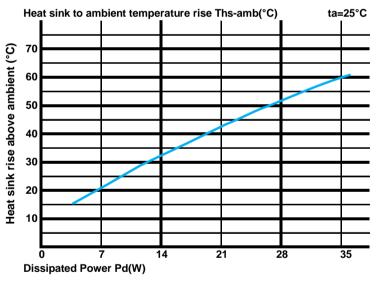
MOUNTING OPTION	Module type	Holder NO.	LEDiL products		THREAD	THREAD	THREAD HOLE
			Lena series	Ronda series	IHKEAD	DEPTH	DISTANCE
N	/	None	None	None	None	None	None
1	NVCWL024Z; NVCLL024Z; NVNWS007Z; NJCWS024Z;	BJB Holder 47.319.6180.50	CN14xxx; C13xxx; C12xxx;	FN15xxx-xx	МЗ	6.5mm	25.0mm/ 2-@180° (Zhaga book 11)
		TE Holder 2213118-1					
2	NFCWL036B; NFCLL036B; NFCWL060B; NFCLL060B;	Ideal Holder 50-2100NC			МЗ	6.5mm	35.0mm/ 2-@180° (Zhaga book 3)
		TE Holder 2213382-2					
	NFCWJ108B; NFCLJ108B; NFDWJ130B; NFDLJ130B;	Ideal Holder 50-2103NC					
		TE Holder 2213358-2					

Tel:+86-769-39023131
Fax:+86-(020)28819702 ext:22122
Email:sales@mingfatech.com
Http://www.heatsinkled.com
Http://www.mingfatech.com

GOOLED

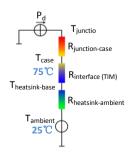
GooLED-NIC-8650 Pin Fin Heat Sink Φ86.5mm for Nichia

The product deta table



Model No.	GooLED-NIC-8650		
Heatsink Size	Ф86.5xH50mm		
Heatsink Material	AL1070		
Finish	Black Anodized		
Weight (g)	210.0		
Dissipated power (Ths-amb,50℃)	27.0 (W)		
Cooling surface area (mm²)	77577		
Thermal Resistance (Rhs-amb)	1.85 (°C/W)		

The thermal data table


- * Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- *To calculate the dissipated power please use the following formula: $Pd = Pe \times (I \eta L)$.
 - Pd Dissipated power ; Pe Electrical power ; $\eta L = \text{Light effciency of the LED module};$

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)		
		GooLED-NIC-8650			
Dissipated Power Pd(W)	7.0	2.86	20.0		
	14.0	2.21	31.0		
	21.0	2.00	42.0		
	28.0	1.82	51.0		
	35.0	1.69	59.0		

- *The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material).
- MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.

 $Either thermal\ grease, A\ thermal\ pad\ or\ a\ phase\ change\ thermal\ pad\ thickness\ 0.\ I-0.\ I\ 5mm\ is\ recommended.$

- *Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths - Ta)/Pd$
- $oldsymbol{ heta}$ Thermal Resistance [°C/W] ; Ths Heatsink temperature ; Ta Ambient temperature ;
- *The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{junction-case}$, the thermal resistance of the TIM outside the package is $R_{interface}(TIM)[^{\circ}C/W]$, the thermal resistance with the heat sink is $R_{heatsink-ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C].
- *Thermal resistances outside the package $R_{interface\,(TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{\text{case-ambient}}$ at this point. Thus, the following formula is also used:

 $T_{junction} = (R_{junction-case} + R_{case-ambient}) \cdot Pd + T_{ambient}$