

Features VS Benefits

- * The GooLED-NIC-8630 Nichia Pin Fin LED Heat Sinks are specifically designed for luminaires using the Nichia LED engines.
- * Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- * For spotlight and downlight designs from 1,200 to 3,200 lumen.
- * Thermal resistance range Rth 2.5°C/W.
- * Modular design with mounting holes foreseen for direct mounting of Nichia COB series.
- * Diameter 86.5mm standard height 50.0mm, Other heights on request.
- * Forged from highly conductive aluminum.
- Zhaga LED engine and radiator assembly is a unified future international standardization

 * Below you find an overview of Nichia COB's and LED modules which standard fit on the Pin Fin LED Heat Sinks.
- * In this way mechanical after work and related costs can be avoided, and lighting designers
- can standardize their designs on a limited number of LED Pin Fin LED Heat Sink.

Nichia LED Modules directly Mounting Options Nichia COB LED modules name: NFCWJ108B; NFCLJ108B; NFDUJ130B; With the Zhaga Book 3 Holders: TE LED Holder:2213580-2; Ideal Holder:50-2103NC; Direct mounting with machine screws M3x6.5mm, green indicator marks. NFCWL036B; NFCUL036B; NFCUL036B; NFCUL060B; With the Zhaga Book 3 Holders: Ideal Holder:50-2100NC; TE LED Holder:2213382-2; Direct mounting with machine screws M3x6.5mm, Green indicator marks. With the Zhaga Book 3 Holders: Ideal Holder:50-2100NC; TE LED Holder:2213382-2; Direct mounting with machine screws M3x6.5mm, Green indicator marks. With the LEDiL products: Lena series: CN14xxx; C13xxx; C12xxx; Ronda series: FN15xxx-xx;

NVCWL024Z; NVCLL024Z; NVNWS007Z; NJCWS024Z; With the Zhaga Book 11 Holders: BJB holder:47.319.6180.50; TE LED Holder:2213118-1; Direct mounting with machine screws M3x8mm, Red indicator marks. With the LEDiL products: Lena series: CN14xxx; C13xxx; C12xxx; Ronda series: FN15xxx-xx;

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

GOOLED

GooLED-NIC-8630 Pin Fin Heat Sink Φ86.5mm for Nichia

Mounting Options and Drawings & Dimensions

3

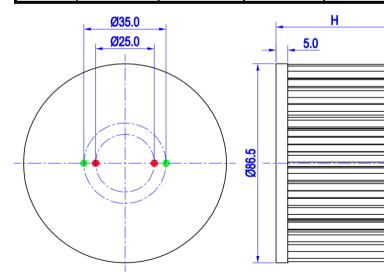
Example:GooLED-NIC-8630-B-1,2 Example:GooLED-NIC-86

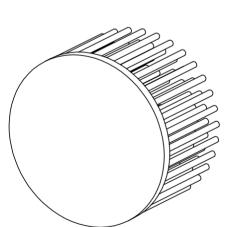
Z-Custom

Ex.order code - 12

Notes:

- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.


means option 1 and 2 combined


details Combinations available

Mounting Options - see graphics for

Por specific mechanical adaptations please contact winglarech.
 MingfaTech reserves the right to change products or specifications without prior notice.

MOUNTING	Module type	Holder NO.	LEDiL products		THREAD	THREAD	THREAD HOLE
OPTION			Lena series	Ronda series	INKEAD	DEPTH	DISTANCE
Ν	/	None	None	None	None	None	None
1	NVCWL024Z; NVCLL024Z; NVNWS007Z; NJCWS024Z;	BJB Holder 47.319.6180.50	CN14xxx; C13xxx; C12xxx;	FN15xxx-xx	M3	6.5mm	25.0mm/ 2-@180° (Zhaga book 11)
		TE Holder 2213118-1					
2	NFCWL036B; NFCLL036B; NFCWL060B; NFCLL060B;	Ideal Holder 50-2100NC			МЗ	6.5mm	35.0mm/ 2-@180° (Zhaga book 3)
		TE Holder 2213382-2					
	NFCWJ108B; NFCLJ108B; NFDWJ130B; NFDLJ130B;	Ideal Holder 50-2103NC					
		TE Holder 2213358-2					

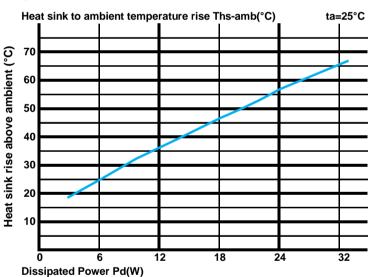
Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

GooLED-NIC-8630 Pin Fin Heat Sink Ø86.5mm for Nichia

The product deta table

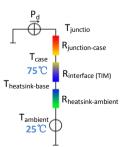
Go

OOLED	Model No.	GooLED-NIC-8630		
	Heatsink Size	Ф86.5xH30mm		
	Heatsink Material	AL1070		
	Finish	Black Anodized		
	Weight (g)	152.0		
	Dissipated power (Ths-amb,50°C)	20.0 (W)		
	Cooling surface area (mm ²)	48926		
	Thermal Resistance (Rhs-amb)	2.5 (°C/W)		


The thermal data table

* Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.

*To calculate the dissipated power please use the following formula: $Pd = Pe \times (I - \eta L)$.


Pd - Dissipated power ; Pe - Electrical power ; ηL = Light effciency of the LED module;

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)	
		GooLED-NIC-8630		
Dissipated Power Pd(W)	6.0	4.00	24.0	
	12.0	2.92	35.0	
	18.0	2.56	46.0	
	24.0	2.33	56.0	
	32.0	2.03	65.0	

*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.

Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths - Ta)/Pd$

heta - Thermal Resistance [°C/W] ; Ths - Heatsink temperature ; Ta - Ambient temperature ;

*The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is R_{junction-case}, the thermal resistance of the TIM outside the package is R_{interface (TIM)} [°C/W], the thermal resistance with the heat sink is $R_{heatsink-ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C].

*Thermal resistances outside the package $R_{\text{interface (TIM)}}$ and $R_{\text{heatsink-ambient}}$ can be integrated into the thermal resistance $R_{\text{case-ambient}}$ at this point. Thus, the following formula is also used: $T_{junction} = (R_{junction-case} + R_{case-ambient}) \cdot Pd + T_{ambient}$

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

