

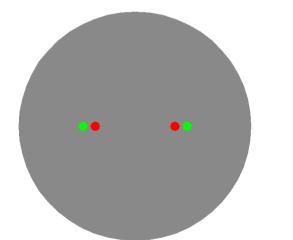
xLED-LUN-8030 Pin Fin LED Heat Sink Ø80mm for Luminus

Features VS Benefits

- * The xLED-LUN-8030 Luminus Pin Fin LED Heat Sinks are specifically designed for luminaires using the Luminus LED engines.
- * Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- * For spotlight and downlight designs from 1,000 to 2,600 lumen.
- * Thermal resistance range Rth 3.13°C/W.
- * Modular design with mounting holes foreseen for direct mounting of Luminus COB series.
- * Diameter 80mm standard height 30mm, Other heights on request.
- * Forged from highly conductive aluminum.

Zhaga LED engine and radiator assembly is a unified future international standardization * Below you find an overview of Luminus COB's and LED modules which standard fit on the Pin Fin LED Heat Sinks.

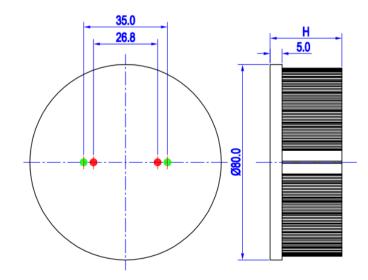
- * In this way mechanical after work and related costs can be avoided, and lighting designers
- can standardize their designs on a limited number of LED Pin Fin LED Heat Sink.

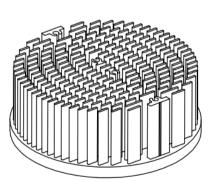


Luminus LED Modules directly Mounting Options

CXM-18;

With the Zhaga Book 3 holders for the green indicator marks. BJB Holder:47.319.2280.50; Direct mounting with machine screws M3x6.5mm. With the LEDiL products: Lena series: CN12xxx;




Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

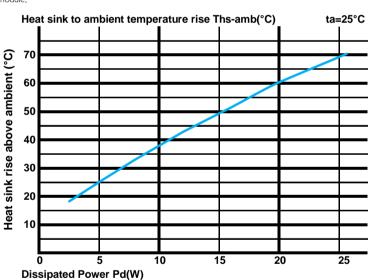
OPTION	modulo type		Lenina Series	Lena series	milling	DEPTH	DISTANCE
1	CXM-11; CIM/CLM/CXM-14	/	CN12xxx; C12xxx;	CN12xxx;	МЗ	6.5mm	26.8mm/ 2-@180°
2		BJB Holder 47.319.2021.50			МЗ	6.5mm	35.0mm/ 2-@180° (Zhaga book 3)
		TE Holder 2213254-1					
	CXM-18;	BJB Holder 47.319.2280.50	1				
		TE Holder 2213258-1					

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

xLED-LUN-8030 Pin Fin LED Heat Sink Ø80mm for Luminus

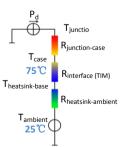
The product deta table

xLED	Model No.	xLED-LUN-8030	
	Heatsink Size	Ф80хН30mm	
	Heatsink Material	AL1070	
	Finish	Black Anodized	
11111111 ×	Weight (g)	140.0	
	Dissipated power (Ths-amb,50°C)	16.0 (W)	
	Cooling surface area (mm ²)	72123	
	Thermal Resistance (Rhs-amb)	3.13 (°C/W)	


The thermal data table

* Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.

*To calculate the dissipated power please use the following formula: $Pd = Pe \times (I - \eta L)$.


Pd - Dissipated power ; Pe - Electrical power ; ηL = Light effciency of the LED module;

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)	
		xLED-LUN-8030		
Dissipated Power Pd(W)	5.0	5.00	25.0	
	10.0	3.80	38.0	
	15.0	3.27	49.0	
	20.0	3.00	60.0	
	25.0	2.76	69.0	

*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.

Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths - Ta)/Pd$

 $\theta\,$ - Thermal Resistance [°C/W] ; $\,$ Ths - Heatsink temperature ; $\,$ Ta - Ambient temperature ;

*The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{junction-case}$, the thermal resistance of the TIM outside the package is $R_{interface (TIM)} [°C/W]$, the thermal resistance with the heat sink is $R_{heatsink-ambient} [°C/W]$, and the ambient temperature is $T_{ambient} [°C]$.

*Thermal resistances outside the package $R_{interface (TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is also used: $T_{junction}=(R_{junction-case}+R_{case-ambient})$ Pd+ $T_{ambient}$

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

