

GOOLED

GooLED-LG-4868 Pin Fin Heat Sink Φ48mm for LG Innotek

Features VS Benefits

- * The GooLED-LG-4868 LG Innotek Pin Fin LED Heat Sinks are specifically designed for luminaires using the LG Innotek LED engines.
- * Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- * For spotlight and downlight designs from 600 to 1,800 lumen.
- * Thermal resistance range Rth 4.35°C/W.
- * Modular design with mounting holes foreseen for direct mounting of LG Innotek COB series.
- * Diameter 48.0mm standard height 68.0mm Other heights on request.
- * Forged from highly conductive aluminum.

Zhaga LED engine and radiator assembly is a unified future international standardization

- * Below you find an overview of LG Innotek COB's and LED modules which standard fit on the Pin Fin LED Heat Sinks.
- * In this way mechanical after work and related costs can be avoided, and lighting designers can standardize their designs on a limited number of LED Pin Fin LED Heat Sink.

LG Innotek LED Modules directly Mounting Options

LG Innotek 7W&10W COB series.

LEMWM19480xxxxx;

LEMWM19490xxxxx

LEMWM19680xxxxx;

With the Zhaga Book 3 holders for the green indicator marks.

TE Connectivity Holder: 2213382-1:

Without the holders for the blue indicator marks.

Direct mounting with machine screws M3x6.5mm

LG Innotek 16W&21W COB series.

LEMWM24780xxxxxx

LEMWM24790xxxxx

LEMWM24980xxxxx;

LEMWM24990xxxxx;

With the Zhaga Book 3 holders for the green indicator marks.

TE Connectivity Holder: 2213130-1:

BJB Holder:47.319.2011.50

Without the holders for the red indicator marks.

Direct mounting with machine screws M3x6.5mm.

Http://www.mingfatech.com

Mounting Options and Drawings & Dimensions

Example:GooLED-LG-4868-B-1,2

Example:GooLED-LG-48

Height (mm)

Anodising Color

B-Black

C-Clear

Z-Custom

Mounting Options - see graphics for details Combinations available

Ex.order code - 12

means option 1 and 2 combined

Notes:

- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.
- MingfaTech reserves the right to change products or specifications without prior notice.

MOUNTING OPTION	Module type	Holder NO.	THREAD	THREAD DEPTH	THREAD HOLE DISTANCE
1	7W&10W COB	/	М3	6.5mm	24.8mm/ 2-@180°
2	16W&21W COB	/	М3	6.5mm	31.2mm/ 2-@180°
3		BJB Holder 47.319.2011.50	М3	6.5mm	35.0mm/ 2-@180° (Zhaga Book 3)
		TE Holder 2213130-1			
	7W&10W COB	TE Holder 2213382-1			

The product deta table

The thermal data table

- * Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- *To calculate the dissipated power please use the following formula: $Pd = Pe \times (1 \eta L)$.
- Pd Dissipated power; Pe Electrical power; $\eta L = \text{Light effciency of the LED module}$;

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)	
		GooLED-LG-4868		
Dissipated Power Pd(W)	3.0	6.00	18.0	
	6.0	4.83	29.0	
	9.0	4.56	41.0	
	12.0	4.33	52.0	
	15.0	4.13	62.0	

- *The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material).

 MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.
- Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

- *Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths Ta)/Pd$
- $\theta\,$ Thermal Resistance [°C/W] ; Ths - Heatsink temperature ; Ta - Ambient temperature ;
- *The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{\text{junction-case}}$, the thermal resistance of the TIM outside the package is $R_{\text{interface}}$ (TIM) [°C,M], the thermal resistance with the heat sink is $R_{\text{heatsrik-ambent}}$ [°C,M], and the ambient temperature is T_{ambent} [°C].
- *Thermal resistances outside the package $R_{interface (TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is also used: $T_{junction} = (R_{junction-case} + R_{case-ambient})^{p}Pd + T_{ambient}$

Tel:+86-769-39023131
Fax:+86-(020)28819702 ext:22122
Email:sales@mingfatech.com
Http://www.heatsinkled.com
Http://www.mingfatech.com

