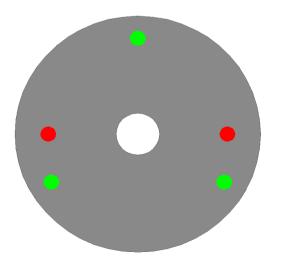


xLED-XIT-4568 Pin Fin LED Heat Sink Ф45mm for Xicato


Features VS Benefits

- * The xLED-XIT-4568 Xicato Pin Fin LED Heat Sinks are specifically designed for luminaires using the Xicato LED engines.
- * Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- * For spotlight and downlight designs from 300 to 1,400 lumen.
- * Thermal resistance range Rth 4.76°C/W.
- * Modular design with mounting holes foreseen for direct mounting of Xicato XSA/ XIM/ XTM modules.
- * Diameter 45.0mm standard height 68.0mm,Other heights on request.
- * Forged from highly conductive aluminum.

Zhaga LED engine and radiator assembly is a unified future international standardization

- * Below you find an overview of Seoul COB's and LED modules which standard fit on the Pin Fin LED Heat Sinks.
- * In this way mechanical after work and related costs can be avoided, and lighting designers can standardize their designs on a limited number of LED Pin Fin LED Heat Sink.

Xicato LED Modules directly Mounting Options

Xicato XSM LED modules name :

XSM8027-xxxx; XSM9530-xxxx; XSM8030-xxxx; XSM8040-xxxx; XSM8040-xxxx; XSMV830-xxxx;

Direct mounting with 3 screwsM3 x 12mm;

Green indicator marks.

Green indicator marks.

Xicato XIM LED modules name :

XIM198027-xxx; XIM198040-xxx; XIM09-V9xxxxx;

XIM198030-xxx; XIM19V830-xxx; XIM0980 xxxxx; XIM0980 xxxxx; XIM0980 xxxxx; Direct mounting with 3 screws M3 x 20mm;

Xicato XTM LED modules:

XTM19-8027-xxx; XTM19-8040-xxx; XTM0995 xxxxx

XTM19-8030-xxx; XTM19-V830-xxx; XTM09-V9xxxxx;

Direct mounting with 3 screws M3 x 10mm; Green indicator marks.

Direct mounting by Zhaga mounting holes with 2 screws M3 x 8mm;

Red indicator marks.

Mounting Options and Drawings & Dimensions

Example: xLED-XIT-4568-M3-B-1

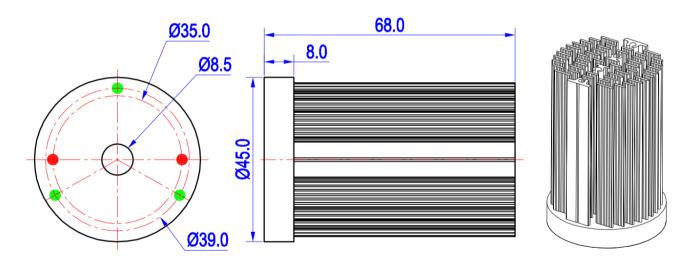
Example: xLED-XIT-4568-M3-

1 Anodising Color

B-Black C-Clear Z-Custom

Mounting Options - see graphics for

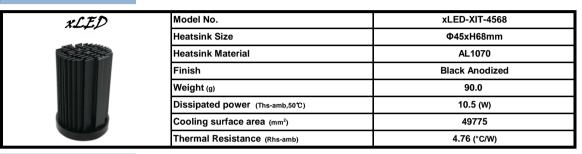
details Combinations available

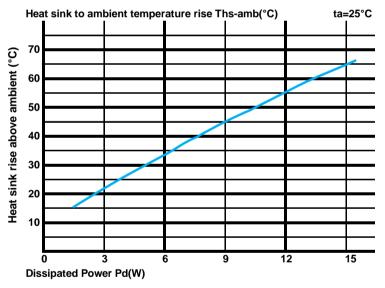

Ex.order code - 12

means option 1 and 2 combined

Notes:

- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.
- MingfaTech reserves the right to change products or specifications without prior notice.


MOUNTING OPTION	PART NUMBER	THREAD	THREAD DEPTH	THREAD HOLE DISTANCE
N	xLED-XIT-4568-M3-#-N	М3	6.5mm	39.0mm/ 3-@120°
1	xLED-XIT-4568-M3-#-1	M3	6.5mm	35.0mm/ 2-@180° (Zhaga Book 3)
2	xLED-XIT-4568-M3-#-2	M3	Ф8.5mm	Through-Hole


The product deta table

The thermal data table

- * Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- *To calculate the dissipated power please use the following formula: $Pd = Pe \times (I \eta L)$.
 - Pd Dissipated power ; Pe Electrical power ; $\eta L = \text{Light effciency of the LED module};$

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)	
		xLED-XIT-4568		
Dissipated Power Pd(W)	3.0	7.00	21.0	
	6.0	5.50	33.0	
	9.0	5.00	45.0	
	12.0	4.58	55.0	
	15.0	4.27	64.0	

- *The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler. Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.
- T_{case}
 T_{case}
 T_{heatsink-base}
 T_{ambient}
 T_{ambient}
 T_{ambient}
 T_{ambient}
 T_{ambient}
 T_{ambient}
 T_{ambient}
- *Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths Ta)/Pd$
- $\theta\,$ Thermal Resistance [°C/W] ; Ths - Heatsink temperature ; Ta - Ambient temperature ;
- *The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{\text{junction-case}}$, the thermal resistance of the TIM outside the package is $R_{\text{interface}}(TIM)$ ["C,W], the thermal resistance with the heat sink is $R_{\text{heatsink-ambient}}$ ["C,W], and the ambient temperature is T_{ambient} ["C].
- *Thermal resistances outside the package $R_{interface (TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is also used: $T_{junction} = (R_{junction-case} + R_{case-ambient}) \cdot Pd + T_{ambient}$

Tel:+86-769-39023131
Fax:+86-(020)28819702 ext:22122
Email:sales@mingfatech.com
Http://www.heatsinkled.com
Http://www.mingfatech.com

