## xLED-6050 Pin Fin Heat Sink Ф60mm #### **Features VS Benefits** - \* Mechanical compatibility with direct mounting of the LED modules to the LED cooler and thermal performance matching the lumen packages. - \* For spotlight and downlight designs from 900 to 2,200 lumen. - \* Thermal resistance range Rth 3.85°C/W. - \* Modular design with mounting holes foreseen for direct mounting of a wide range of LED modules and COB's: - \* Diameter 60.0mm Standard height 50.0mm , Other heights on request. - \* Forged from highly conductive aluminum. - \* 2 standard colors clear anodised black anodised. - \* Zhaga Book 3 Spot Light modules: Bridgelux ,Cree ,Citizen ,Edison ,GE lighting, LG Innotek ,Lumileds ,Lumens ,Luminus ,Nichia ,Osram ,Philips ,Prolight Opto, Samsung ,Seoul ,Tridonic ,Vossloh-Schwabe ,Xicato. - 01) Bridelux: Vero 10/13 Vero SE 10/13 LED engines; - 02) Cree: XLamp CXA 13xx, Xlamp CXB 15xx, CXA 18xx LED engines; - 03) Citizen: CLU026, CLU028, CLU036, CLU038, CLU721, CLU711, CLU701 LED engines; - 04) Edison: EdiLex III COB LED engines; - 05) GE lighting: Infusion™ LED engines; - 06) LG Innotek: 7W, 10W, 16W, W21 LED engines; - 07) LumiLEDS: LUXEON 1202, LUXEON 1203 LED engines; - 08) Lumens: Ergon-COB-15xx, 18xx LED engines; - 09) Luminus: CXM-6-AC, CIM/CLM/CXM-9 -A LED engines; - 10) Nichia: NVxxx024Z, NVxxx036Z LED engines; - 11) Osram: SOLERIQ® S 9/S13, Z6 Mini LED engines; - 12) Philips: Fortimo SLM LED engines; - 16) Prolight Opto: PACJ-7xxx-xxxx, PACJ-14xxx-xxxx, PACJ-21xxx LED engines; - 13) Samsung: L010C, L020C, L003D, L006D, L009D, L013D LED engines; - 14) Seoul Semiconductor: Acrich MJT COBs, DC COB LED engines; - 15) Tridonic: SLE G6 10mm, SLE G6 15mm LED engines; - 17) Vossloh-Schwabe: LUGA Shop and LUGA C LED engines; - 18) Xicato: XTM LED engines; #### **Order Information** Example:xLED-6050-B Example:xLED-6050- Anodising Color B-Black > C-Clear Z-Custom ### Notes: - Mentioned models are an extraction of full product range. - For specific mechanical adaptations please contact MingfaTech. - MingfaTech reserves the right to change products or specifications without prior notice. Tel: +86-769-39023131 E-fax: +86-(020)28819702 ext22122 Http://www.heatsinkled.com Http://www.mingfatech.com # The product deta table #### The thermal data table - \* Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module. - \*To calculate the dissipated power please use the following formula: $Pd = Pe x (1-\eta L)$ . - Pd Dissipated power ; Pe Electrical power ; $\eta L$ = Light effciency of the LED module; | Pd = Pe x<br>(1-ηL) | | Heat sink to ambient<br>thermal resistance<br>Rhs-amb (°C/W) | Heat sink to ambient<br>temperature rise<br>Ths-amb (°C) | |------------------------|------|--------------------------------------------------------------|----------------------------------------------------------| | | | xLED-6050 | | | Dissipated Power Pd(W) | 3.0 | 5.67 | 17.0 | | | 6.0 | 4.83 | 29.0 | | | 9.0 | 4.22 | 38.0 | | | 12.0 | 4.00 | 48.0 | | | 15.0 | 3.73 | 56.0 | - \*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). - ${\bf Ming Fa\ recommends\ the\ use\ of\ a\ high\ thermal\ conductive\ interface\ between\ the\ LED\ module\ and\ the\ LED\ cooler.}$ - Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended. - \*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a Geometric shapes are different, the thermal resistance is different. Formula: θ =(Ths-Ta)/Pd - $\theta$ Thermal Resistance [°C/W] ; Ths - Heatsink temperature ; Ta - Ambient - \*The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the shell is $R_{junction\text{-}case}$ , the thermal resistance of the TIM outside the package is $R_{interface\ (TIM)}$ [°C/W], the thermal resistance with heat sink is $R_{heatsink\text{-}ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C]. - \*Thermal resistances outside the package $R_{interface \, (TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is also used: $T_{iunction}=(R_{iunction-case}+R_{case-ambient})-Pd+T_{ambient}$ Tel: +86-769-39023131 E-fax: +86-(020)28819702 ext22122 Http://www.heatsinkled.com Http://www.mingfatech.com