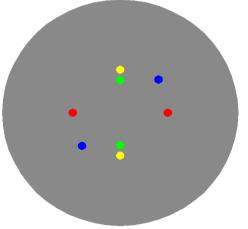


GOOLED

GooLED-LUME-8630 Pin Fin Heat Sink Φ86.5mm for Lumens


Features VS Benefits

- * The GooLED-LUME-8630 Lumens Pin Fin LED Heat Sinks are specifically designed for luminaires using the Lumens LED engines.
- * Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- * For spotlight and downlight designs from 1,200 to 3,200 lumen.
- * Thermal resistance range Rth 2.5°C/W.
- * Modular design with mounting holes foreseen for direct mounting of Lumens Ergon COB series, and AC-ALL series LED engines.
- * Diameter 86.5mm standard height 30.0mm Other heights on request.
- * Forged from highly conductive aluminum.

Zhaga LED engine and radiator assembly is a unified future international standardization

- * Below you find an overview of Lumens COB's and LED modules which standard fit on the Pin Fin LED Heat Sinks.
- * In this way mechanical after work and related costs can be avoided, and lighting designers can standardize their designs on a limited number of LED Pin Fin LED Heat Sink.

Lumens LED Modules directly Mounting Options Lumens Ergon COB_HO, COB_HO+, COB_HE Series:

ERC1812xxxxHO; ERC1812xxxxHE; ERC1820xxxHO; ERC1820xxxxHC; With the Zhaga Book 3 holders for the red indicator marks. (Ideal Holder:50-2101CR); (BJB holder:47.319.2131.50); Without the holders for the green indicator marks. Direct mounting with machine screws M3x6.5mm.

Lumens Ergon COB_HO, COB_HO+, COB_HE Series :

ERC2520xxxxHO; ERC2530xxxxHE; ERC2530xxxxHO; ERC2540xxxxHE; ERC2540xxxxHO; ERC2530xxxxHO+ ERC2520xxxxHO+

With the Zhaga Book 3 holders for the red indicator marks. (Ideal Holder:50-2102CR); (BJB Holder:47.319.2141.50); Without the holders for the yellow indicator marks.

Lumens Ergon COB_HO, COB_HO+, COB_HE Series :

ERC3050xxxxHO; ERC3050xxxxHE; ERC3070xxxxHO; ERC3070xxxxHE; With the Zhaga Book 3 holders for the green indicator marks. (Ideal Holder:50-2234C); (BJB holder:47.319.2151.50); Without the holders for the blue indicator marks.

Direct mounting with machine screws M3x6.5mm

Lumens AC-ALL Series :

EDC/57C/20W/xxx/120V/B; EDC/57C/20W/xxx/230V/A; EDC/57C/30W/xxx/120V/B; EDC/57C/30W/xxx/230V/A; EDC/57C/40W/xxx/120V/B; EDC/57C/40W/xxx/230V/A;

With the Zhaga Book 3 holders for the red indicator marks. Direct mounting with machine screws M3x6.5mm.

Please refer to the www.lumensleds.com data provided on the manual.

Mingfa

GooLED-LUME-8630 Pin Fin Heat Sink Φ86.5mm for Lumens

Mounting Options and Drawings & Dimensions

Example:GooLED-LUME-8630-B-1,2

Example:GooLED-LUME-86 1 - 2 - 3

1 Height (mm)

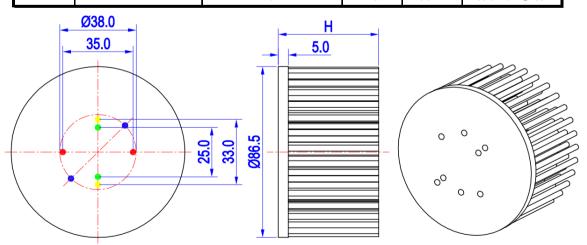
Anodising Color

B-Black

C-Clear

Z-Custom

Mounting Options - see graphics for details Combinations available


Ex.order code - 12

means option 1 and 2 combined

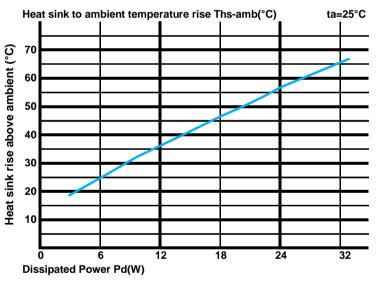
Notes:

- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.
- MingfaTech reserves the right to change products or specifications without prior notice.

MOUNTING OPTION	Module type	Holder NO.	THREAD	THREAD DEPTH	THREAD HOLE DISTANCE
1	Ergon COB (17.85×17.85)	1	М3	6.5mm	25.0mm/ 2-@180°
2	Ergon COB (23.85×23.85)	1	М3	6.5mm	33.0mm/ 2-@180°
3	AC-ALL Series	Lumens	МЗ	6.5mm	35.0mm/ 2-@ 180° (Zhaga book 3)
	Ergon COB (17.85×17.85)	BJB Holder 47.319.2131.50			
		Ideal Holder 50-2101CR			
	Ergon COB (23.85×23.85)	BJB Holder 47.319.2141.50			
		Ideal Holder 50-2102CR	1		
	Ergon COB (27.35×27.35)	BJB Holder 47.319.2151.50	1		
		Ideal Holder 50-2234CR	1		
4	<u> </u>	/	М3	6.5mm	38.0mm/ 2-@180°

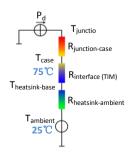
Tel:+86-769-39023131
Fax:+86-(020)28819702 ext:22122
Email:sales@mingfatech.com
Http://www.heatsinkled.com
Http://www.mingfatech.com

The product deta table



Model No.	GooLED-LUME-8630		
Heatsink Size	Ф86.5хH30mm		
Heatsink Material	AL1070		
Finish	Black Anodized		
Weight (g)	152.0		
Dissipated power (Ths-amb,50℃)	20.0 (W)		
Cooling surface area (mm²)	48926		
Thermal Resistance (Rhs-amb)	2.5 (°C/W)		

The thermal data table


- * Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- *To calculate the dissipated power please use the following formula: $Pd = Pe \times (1-\eta L)$.
- Pd Dissipated power ; Pe Electrical power ; $\eta L =$ Light effciency of the LED module;

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)	
		GooLED-LUME-8630		
Dissipated Power Pd(W)	6.0	4.00	24.0	
	12.0	2.92	35.0	
	18.0	2.56	46.0	
	24.0	2.33	56.0	
	32.0	2.03	65.0	

- *The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material).
- $\label{thm:mingFa} \mbox{MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.}$

 $Either thermal\ grease, A\ thermal\ pad\ or\ a\ phase\ change\ thermal\ pad\ thickness\ 0.\ I-0.\ I\ 5mm\ is\ recommended.$

- *Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths Ta)/Pd$
- $\theta\,$ Thermal Resistance [°C/W] ; Ths - Heatsink temperature ; Ta - Ambient temperature ;
- *The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{junction-case}$, the thermal resistance of the TIM outside the package is $R_{interface}$ (TIM) [°C/M], the thermal resistance with the heat sink is $R_{heatsink-ambient}$ [°C/M], and the ambient temperature is $T_{ambient}$ [°C/].
- *Thermal resistances outside the package $R_{interface\,(TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is also used:

 $T_{junction} = (R_{junction-case} + R_{case-ambient}) \cdot Pd + T_{ambient}$

