

Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

Anodising Color B-Black C-Clear

Z-Custom

4

Ex.order code - 12

Notes:

47.319.2021.50

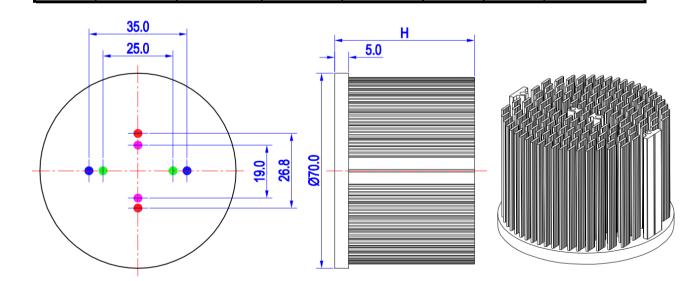
AAG.STUCCHI 8101-G2

- Mentioned models are an extraction of full product range.

- For specific mechanical adaptations please contact MingfaTech.

M3

6 5mm


means option 1 and 2 combined

SLE G6 17mm;

Mounting Options - see graphics for details Combinations available

- MingfaTech reserves the right to change products or specifications without prior notice. LEDiL products MOUNTING THREAD THREAD HOLE Holder NO. THREAD Module type DISTANCE OPTION DEPTH **Olivia Series** Ronda series 19.0mm/ 2-@180° МЗ 6.5mm 1 SLE G6 10mm: 1 BJB Holder 25.0mm/ 2-@180° 2 M3 6.5mm 47.319.6020.50 (Zhaga book 11) 26.8mm/ 2-@180° 3 M3 6.5mm FN15xxx-xx; BJB Holder FN14637-S; SLE G6 15mm;

FN14828-M;

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

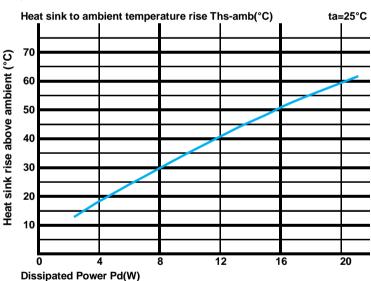
35.0mm/ 2-@180°

(Zhaga book 3)

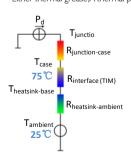
xLED-TRI-7050 Pin Fin Heat Sink Ø70mm for Tridonic

The product deta table

xLED	Model No.	xLED-TRI-7050
	Heatsink Size	Φ70xH50mm
	Heatsink Material	AL1070
	Finish	Black Anodized
	Weight (g)	150.0
	Dissipated power (Ths-amb,50℃)	16.0 (W)
	Cooling surface area (mm ²)	91577
	Thermal Resistance (Rhs-amb)	3.13 (°C/W)


The thermal data table

* Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.


*To calculate the dissipated power please use the following formula: $Pd = Pe \times (1 - \eta L)$.

Pd - Dissipated power ; Pe - Electrical power ; ηL = Light effciency of the LED module;

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)
		xLED-TRI-7050	
Dissipated Power Pd(W)	4.0	4.25	17.0
	8.0	3.63	29.0
	12.0	3.33	40.0
	16.0	3.13	50.0
	20.0	2.95	59.0

*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler. Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths - Ta)/Pd$

 θ - Thermal Resistance [°C/W]; Ths - Heatsink temperature; Ta - Ambient temperature;

*The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is R_{junction-case}, the thermal resistance of the TIM outside the package is R_{interface (TIM)} [°C/W], the thermal resistance with the heat sink is $R_{heatsink-ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C].

*Thermal resistances outside the package $R_{interface \, (TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $\mathsf{R}_{case-ambient}$ at this point. Thus, the following formula is also used: $T_{junction} = (R_{junction-case} + R_{case-ambient}) \cdot Pd + T_{ambient}$

Tel:+86-769-39023131 Fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

