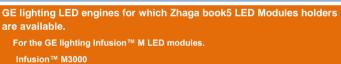


xLED-GE-8050 Pin Fin LED Heat Sink Ø80mm for GE Lighting


Features VS Benefits

- * The xLED-GE-8050 GE Lighting Pin Fin LED Heat Sinks are specifically designed for luminaires using the GE Lighting LED engines.
- * Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- * For spotlight and downlight designs from 1,100 to 3,400 lumen.
- * Thermal resistance range Rth 2.38°C/W.
- * Modular design with mounting holes foreseen for direct mounting of GE lighting Infusion™ LED engines.
- * Diameter 80.0mm standard height 50.0mm Other heights on request.
- * Forged from highly conductive aluminum.

Zhaga LED engine and radiator assembly is a unified future international standardization

- * Below you find an overview of GE Lighting engines COB's and LED modules which standard fit on the Pin Fin LED Heat Sinks.
- * In this way mechanical after work and related costs can be avoided, and lighting designers can standardize their designs on a limited number of LED Pin Fin LED Heat Sink.

M3000/827/W/G4; M3000/830/W/G4; M3000/835/W/G4; M3000/840/W/G4; M3000/930/W/G4;

Infusion™ M4500

M4500/827/W/G4; M4500/830/W/G4; M4500/835/W/G4; M4500/840/W/G4; M4500/930/W/G4;

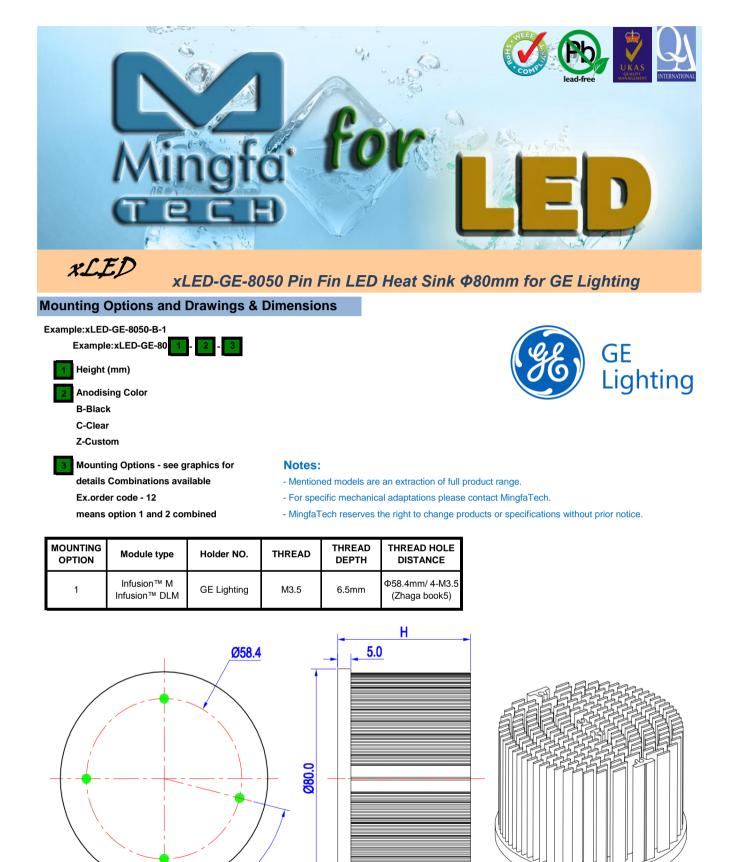
For the GE lighting Infusion™ DLM LED modules.

Infusion™ DLMM3000 DLM3000/927; DLM3000/930; DLM3000/935; DLM3000/940;

Infusion™ DLM4000

DLM4000/927; DLM4000/930;

DLM4000/940;


Please refer to the "http://www.gelighting.com/LightingWeb/emea/" data ovided on the manual.

Zhaga Book5 Green indicator marks:

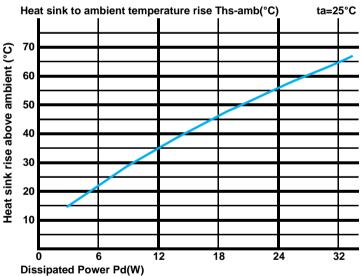
Direct mounting with machine screws M3.5x6.5mm;

Tel:+86-769-39023131 E-fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

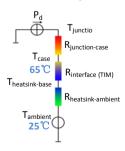
16

xLED-GE-8050 Pin Fin LED Heat Sink Ø80mm for GE Lighting

The product deta table


xLED	Model No.	xLED-GE-8050
	Heatsink Size	Ф80xH50mm
	Heatsink Material	AL1070
	Finish	Black Anodized
	Weight (g)	197.0
	Dissipated power (Ths-amb,50℃)	21.0 (W)
	Cooling surface area (mm ²)	120774
	Thermal Resistance (Rhs-amb)	2.38 (°C/W)

The thermal data table


* Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.

- *To calculate the dissipated power please use the following formula: $Pd = Pe x (1-\eta L)$.
 - Pd Dissipated power ; Pe Electrical power ; ηL = Light effciency of the LED module;

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)
		xLED-GE-8050	
Dissipated Power Pd(W)	6.0	3.50	21.0
	12.0	2.92	35.0
	18.0	2.56	46.0
	24.0	2.29	55.0
	32.0	2.00	64.0

*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler. Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths - Ta)/Pd$ θ - Thermal Resistance [°C/W]; Ths - Heatsink temperature; Ta - Ambient

*The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of shell is $R_{junction-case}$, the thermal resistance of the TIM outside the package is $R_{interface (TIM)}$ [°C/W], the thermal heat sink is $R_{heatsink-ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C].

*Thermal resistances outside the package $R_{interface (TIM)}$ and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is $T_{junction}=(R_{junction-case}+R_{case-ambient})\cdot Pd+T_{ambient}$

Tel:+86-769-39023131 E-fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

