

Features VS Benefits

- * The XSA-320 Xicato Pin Fin LED Heat Sinks are specifically designed for luminaires using the Xicato LED engines.
- * Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- * For spotlight and downlight designs from 800 to 2,100 lumen.
- * Thermal resistance range Rth 3.85°C/W.
- * Xicato Thermal Class F , (60° tilt angle, 40°C ambient) .
- * Modular design with mounting holes foreseen for direct mounting of Xicato XSA/ XIM/ XTM modules.
- * Diameter 58.0mm standard height 50.0mm,Other heights on request.
- * Forged from highly conductive aluminum.
- *The XSA-320 Xicato Pin Fin Heat Sink is standard foreseen from a variety of mounting holes which allow direct mounting of all Xicato Spot and down light LED modules and secondary optics on the Pin Fin LED heat sink.
- *In this way mechanical afterwork and related costs can be avoided, and lighting designers can standardize their designs on a limited number of LED coolers.
- *Below you find an overview of Xicato LED modules which standard fit on the XSA-320 Pin Fin LED Heat Sinks.
- *MingFa performs thermal validation tests on each of the LED modules mounted on the LED cooler and publishes.
- *This data in the Xicato Cooler thermal validation reports.
- *For a full overview of avaliable LED coolers for Xicato LEDs, please refer to the Xicato LED cooler overview on.

er to the Xicato LED cooler overview on. Xicato LED Modules directly Mounting Options

Xicato XSM LED modules name :

XSM8027-xxxx; XSM9530-xxxx;
XSM8030-xxxx; XSM9540-xxxx;
XSM8040-xxxx; XSMV830-xxxx;
XSM9527-xxxx;

Direct mounting with 3 screwsM3 x 12mm;

Green indicator marks.

Xicato XIM LED modules name :

XIM198027-xxx ; XIM198040-xxx ; XIM09-V9xxxxxx ;

XIM198030-xxx; XIM19V830-xxx; XIM198035-xxx; XIM0980 xxxxxx;

Direct mounting with 3 screws M3 x 20mm;

Green indicator marks.

Xicato XTM LED modules:

XTM19-8027-xxx; XTM19-8040-xxx; XTM0995 xxxxxx;

XTM19-8030-xxx; XTM19-V830-xxx; XTM19-8035-xxx; XTM09-V9xxxxxx;

Direct mounting with 3 screws M3 x 10mm;

Green indicator marks.

Direct mounting by Zhaga mounting holes with 2 screws M3 x 8mm;

Red indicator marks.

Mounting Options and Drawings & Dimensions

Example: XSA-320-M3-B-1

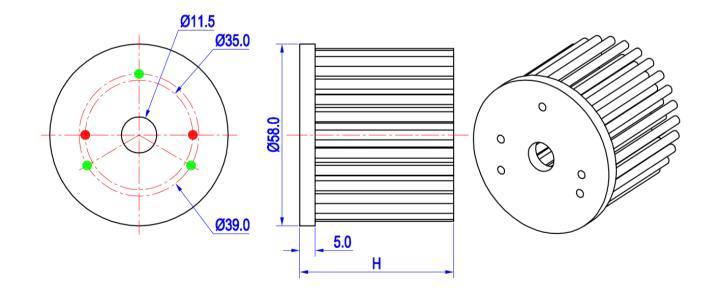
Example: XSA-320-M3-

1 Anodising Color B-Black

> C-Clear Z-Custom

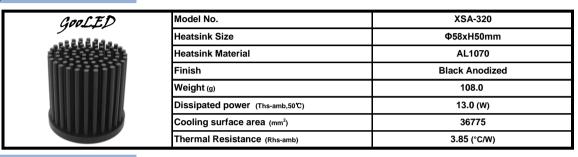
Mounting Options - see graphics for

details Combinations available

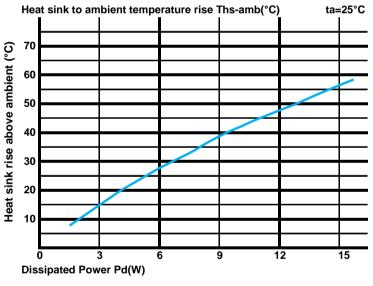

means option 1 and 2 combined

Ex.order code - 12

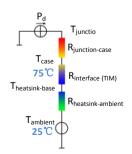
Notes:


- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.
- MingfaTech reserves the right to change products or specifications without prior notice.

MOUNTING OPTION	PART NUMBER	THREAD	THREAD DEPTH	THREAD HOLE DISTANCE
N	XSA-320-M3-#-N	М3	6.5mm	39.0mm/ 3-@120°
1	XSA-320-M3-#-1	M3	6.5mm	35.0mm/ 2-@180° (Zhaga Book 3)
2	XSA-320-M3-#-2	М3	Ф11.5mm	Through-Hole


The product deta table

The thermal data table


- * Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- *To calculate the dissipated power please use the following formula: $Pd = Pe \times (I \eta L)$.
- Pd Dissipated power ; Pe Electrical power ; $\eta L = \text{Light effciency of the LED module}$;

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)	
		XSA-320		
Dissipated Power Pd(W)	3.0	5.00	15.0	
	6.0	4.67	28.0	
	9.0	4.33	39.0	
	12.0	4.00	48.0	
	15.0	3.80	57.0	

- *The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material).
- $\label{thm:mingFa} \mbox{MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.}$

Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended.

- *Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths Ta)/Pd$
- θ Thermal Resistance [°C/W]; Ths Heatsink temperature; Ta Ambient temperature;
- *The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{\text{junction-case}}$, the thermal resistance of the TIM outside the package is $R_{\text{interface}}(TIM)$ [°C/M], the thermal resistance with the heat sink is $R_{\text{heatsink-ambient}}$ [°C/M], and the ambient temperature is T_{ambient} [°C].
- *Thermal resistances outside the package $R_{interface}$ (TIM) and $R_{heatsink-ambient}$ can be integrated into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is also used: $T_{iunction} = (R_{unction-case} + R_{case-ambient}) \cdot Pd + T_{ambient}$

Tel:+86-769-39023131
Fax:+86-(020)28819702 ext:22122
Email:sales@mingfatech.com
Http://www.heatsinkled.com
Http://www.mingfatech.com

