

Features VS Benefits

- * The GooLED-GE-8650 GE Lighting Pin Fin LED Heat Sinks are specifically designed for luminaires using the GE Lighting LED engines.
- * Mechanical compatibility with direct mounting of the LED engines to the LED cooler and thermal performance matching the lumen packages.
- * For spotlight and downlight designs from 1,000 to 2,800 lumen.
- * Thermal resistance range Rth 2.05°C/W.
- * Modular design with mounting holes foreseen for direct mounting of GE lighting Infusion™ LED engines.
- * Diameter 86.5mm standard height 50mm Other heights on request.
- * Forged from highly conductive aluminum.

Zhaga LED engine and radiator assembly is a unified future international standardization

- * Below you find an overview of GE Lighting engines COB's and LED modules which standard fit on the Pin Fin LED Heat Sinks.
- * In this way mechanical after work and related costs can be avoided, and lighting designers can standardize their designs on a limited number of LED Pin Fin LED Heat Sink.

GE lighting LED engines for which Zhaga book5 LED Modules holders are available.

For the GE lighting Infusion™ M LED modules.

Infusion™ M3000

M3000/830/W/G4; M3000/835/W/G4; M3000/840/W/G4;

Infusion™ M4500

For the GE lighting Infusion™ DLM LED modules.

Infusion™ DLMM3000

Infusion™ DLM4000

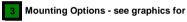
Please refer to the "http://www.gelighting.com/LightingWeb/emea/" data provided on the manual.

Zhaga Book5 Green indicator marks:

Direct mounting with machine screws M3.5x6.5mm;

Mounting Options and Drawings & Dimensions

Example:GooLED-GE-8650-B-1

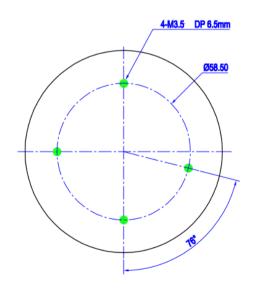

Example:GooLED-GE-86 1 - 2 - 3

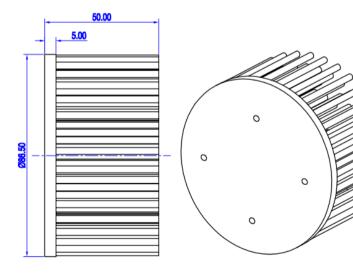
Anodising Color B-Black

C-Clear

Z-Custom

details Combinations available


Ex.order code - 12


means option 1 and 2 combined

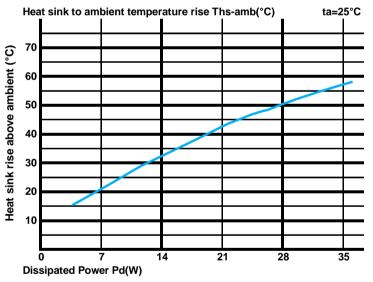
- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MingfaTech.
- MingfaTech reserves the right to change products or specifications without prior notice.

MOUNTING OPTION	Module type	Holder NO.	THREAD	THREAD DEPTH	THREAD HOLE DISTANCE
1	Infusion™ M Infusion™ DLM	GE Lighting	M3.5	6.5mm	Ф58.4mm/ 4-M3.5 (Zhaga book5)

GE

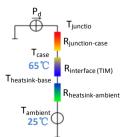
Lighting

The product deta table



Model No.	GooLED-GE-8650		
Heatsink Size	Ф86.5хH50mm		
Heatsink Material	AL1070		
Finish	Black Anodized		
Weight (g)	210.0		
Dissipated power (Ths-amb,40℃)	19.5(W)		
Cooling surface area (mm²)	77577		
Thermal Resistance (Rhs-amb)	2.05 (°C/W)		

The thermal data table


- * Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- *To calculate the dissipated power please use the following formula: $Pd = Pe \times (I \eta L)$.
 - Pd Dissipated power ; Pe Electrical power ; $\eta L = \text{Light effciency of the LED module};$

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)	
		GooLED-GE-8650		
Dissipated Power Pd(W)	7.0	2.86	20.0	
	14.0	2.21	31.0	
	21.0	2.00	42.0	
	28.0	1.79	50.0	
	35.0	1.60	56.0	

- *The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material).

 MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.
- $Either thermal\ grease, A\ thermal\ pad\ or\ a\ phase\ change\ thermal\ pad\ thickness\ 0.1-0.15 mm\ is\ recommended.$

- *Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths Ta)/Pd$
- $\theta\,$ Thermal Resistance [°C/W] ; $\,$ Ths Heatsink temperature ; $\,$ Ta Ambient temperature
- *The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer shell is $R_{\text{junction-case}}$, the thermal resistance of the TIM outside the package is $R_{\text{interface}}(TIM)$ [°C/W], the thermal resistance with the heat sink is $R_{\text{heatsink-ambient}}$ [°C/W], and the ambient temperature is T_{ambient} [°C].
- *Thermal resistances outside the package $R_{\text{Interface (TIM)}}$ and $R_{\text{heatsink-ambient}}$ can be integrated into the thermal resistance $R_{\text{case-ambient}}$ at this point. Thus, the following formula is also used: $T_{\text{junction-case}} + R_{\text{case-ambient}} \cdot Pd + T_{\text{ambient}}$

Tel:+86-769-39023131 E-fax:+86-(020)28819702 ext:22122 Email:sales@mingfatech.com Http://www.heatsinkled.com Http://www.mingfatech.com

